Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.599
Filter
1.
J Agric Food Chem ; 72(12): 6723-6734, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38478988

ABSTRACT

This study investigated the effects of chewing rate and food composition on in vivo aroma release and perception of composite foods. Bread or sponge cake paired with varying sugar content and viscosity strawberry jams, spiked with citral and limonene, were examined. In-nose release was characterized using Proton-Transfer-Reaction-Time-of-Flight-Mass-Spectrometry (PTR-ToF-MS). Simultaneously, Time-Intensity (TI) profiling assessed citrus aroma perception (n = 8, triplicate) while fast and slow chewing protocols were applied (fast: 1.33 chews/s; slow 0.66 chews/s; each for 25 s). Chewing rate did not significantly impact the area under the curve and maximum intensity of in vivo citral and limonene release and citrus aroma perception. Faster chewing rates significantly decreased the time to reach maximum intensity of aroma release (p < 0.05) and citrus aroma perception (p < 0.001). Faster chewing rates probably accelerated structural breakdown, inducing an earlier aroma release and perception without affecting aroma intensity. Adding carriers to jams significantly (p < 0.05) increased aroma release, while perceived citrus aroma intensity significantly (p < 0.05) decreased regardless of chewing rate. In conclusion, chewing rate affects the temporality of in vivo aroma release and perception without affecting its intensity, and carrier addition increases in vivo aroma release while diminishing aroma perception.


Subject(s)
Acyclic Monoterpenes , Mastication , Odorants , Odorants/analysis , Limonene , Perception
2.
Aging (Albany NY) ; 16(6): 5000-5026, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38517361

ABSTRACT

D-galactose (D-gal) administration was proven to induce cognitive impairment and aging in rodents' models. Geraniol (GNL) belongs to the acyclic isoprenoid monoterpenes. GNL reduces inflammation by changing important signaling pathways and cytokines, and thus it is plausible to be used as a medicine for treating disorders linked to inflammation. Herein, we examined the therapeutic effects of GNL on D-gal-induced oxidative stress and neuroinflammation-mediated memory loss in mice. The study was conducted using six groups of mice (6 mice per group). The first group received normal saline, then D-gal (150 mg/wt) dissolved in normal saline solution (0.9%, w/v) was given orally for 9 weeks to the second group. In the III group, from the second week until the 10th week, mice were treated orally (without anesthesia) with D-gal (150 mg/kg body wt) and GNL weekly twice (40 mg/kg body wt) four hours later. Mice in Group IV were treated with GNL from the second week up until the end of the experiment. For comparison of young versus elderly mice, 4 month old (Group V) and 16-month-old (Group VI) control mice were used. We evaluated the changes in antioxidant levels, PI3K/Akt levels, and Nrf2 levels. We also examined how D-gal and GNL treated pathological aging changes. Administration of GNL induced a significant increase in spatial learning and memory with spontaneously altered behavior. Enhancing anti-oxidant and anti-inflammatory effects and activating PI3K/Akt were the mechanisms that mediated this effect. Further, GNL treatment upregulated Nrf2 and HO-1 to reduce oxidative stress and apoptosis. This was confirmed using 99mTc-HMPAO brain flow gamma bioassays. Thus, our data suggested GNL as a promising agent for treating neuroinflammation-induced cognitive impairment.


Subject(s)
Acyclic Monoterpenes , Cognitive Dysfunction , Galactose , Humans , Mice , Animals , Galactose/toxicity , Proto-Oncogene Proteins c-akt/metabolism , Neuroinflammatory Diseases , NF-E2-Related Factor 2/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Oxidative Stress , Aging/metabolism , Cognitive Dysfunction/drug therapy , Antioxidants/pharmacology , Disease Models, Animal , Inflammation/drug therapy
3.
Int J Mol Sci ; 25(5)2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38473763

ABSTRACT

Parkinson's disease (PD) is a common neurodegenerative disorder characterized by the gradual loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc), resulting in reduced dopamine levels in the striatum and eventual onset of motor symptoms. Linalool (3,7-dimethyl-1,6-octadien-3-ol) is a monoterpene in aromatic plants exhibiting antioxidant, antidepressant, and anti-anxiety properties. The objective of this study is to evaluate the neuroprotective impacts of linalool on dopaminergic SH-SY5Y cells, primary mesencephalic and cortical neurons treated with 1-methyl-4-phenylpyridinium ion (MPP+), as well as in PD-like mice induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Cell viability, α-tubulin staining, western blotting, immunohistochemistry and behavioral experiments were performed. In MPP+-treated SH-SY5Y cells, linalool increased cell viability, reduced neurite retraction, enhanced antioxidant defense by downregulation of apoptosis signaling (B-cell lymphoma 2 (Bcl-2), cleaved caspase-3 and poly ADP-ribose polymerase (PARP)) and phagocyte NADPH oxidase (gp91phox), as well as upregulation of neurotrophic signaling (brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF)) and nuclear factor-erythroid 2 related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway. In MPP+-treated primary mesencephalic neurons, linalool enhanced the expressions of tyrosine hydroxylase (TH), Sirtuin 1 (SirT1), and parkin. In MPP+-treated primary cortical neurons, linalool upregulated protein expression of SirT1, γ-Aminobutyric acid type A-α1 (GABAA-α1), and γ-Aminobutyric acid type B (GABAB). In PD-like mice, linalool attenuated the loss of dopamine neurons in SNpc. Linalool improved the motor and nonmotor behavioral deficits and muscle strength of PD-like mice. These findings suggest that linalool potentially protects dopaminergic neurons and improves the impairment symptoms of PD.


Subject(s)
Acyclic Monoterpenes , Neuroblastoma , Neuroprotective Agents , Parkinson Disease , Humans , Mice , Animals , Parkinson Disease/metabolism , Dopaminergic Neurons/metabolism , Antioxidants/metabolism , Odorants , Sirtuin 1/metabolism , Neuroprotective Agents/pharmacology , Neuroblastoma/metabolism , 1-Methyl-4-phenylpyridinium , Muscle Strength , Models, Theoretical , gamma-Aminobutyric Acid/metabolism
4.
Molecules ; 29(5)2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38474462

ABSTRACT

Both geraniol and the products of its transformation, thanks to their beneficial properties, find a variety of applications in cosmetics. Due to their antioxidant and moisturizing properties, these compounds can be added to skin care products such as face creams, lotions, oils, and masks. In addition, these compounds show some antibacterial and antifungal properties, making them suitable for application in skin care products to help fight against bacteria or fungi. This study determined the antimicrobial activity of geraniol and the compounds which were formed during its transformation in relation to selected Gram-positive bacteria, and the preliminary assessment was made whether these compounds can act as ingredients of preparations with potential antimicrobial activity in the treatment of various human diseases (for example diseases of the skin, digestive system, or urinary tract). In addition, this work presents studies on the microbiological purity of cream samples obtained with different contents of geraniol and its transformation products (contents of the tested compounds: 0.5%, 1.5%, 2.5%, 4%, 8%, and 12%). Antibacterial activity tests were performed using the disc diffusion method against Gram-positive cocci, including the reference strains Staphylococcus aureus ATCC 29213 and Enterococcus faecalis ATCC 29212, and against the clinical strains Staphylococcus aureus MRSA, Staphylococcus epidermidis, Enterococcus faecalis VRE VanB, Enterococcus faecium VRE VanA, and Enterococcus faecium VRE VanB. The most active ingredient against bacteria of the Staphylococcus genus was citral, followed by linalool and then geraniol. During our tests, in the case of bacteria of the Enterococcus genus, citral also showed the highest activity, but linalool, ocimenes, and geraniol showed a slightly lower activity. Moreover, this study examined the microbiological purity of cream samples obtained with various contents of geraniol and its transformation products. In the tests of the microbiological purity of cream samples, no growth of aerobic bacteria and fungi was found, which proves the lack of microbiological contamination of the obtained cosmetic preparations. On this basis, it was assessed that these compounds have preservative properties in the prepared creams. The addition of the analyzed compounds also had influence on the durability of the creams and had no effect on the change in their consistency, did not negatively affect the separation of phases during storage, and even had a positive effect on organoleptic sensations by enriching the smell of the tested samples.


Subject(s)
Acyclic Monoterpenes , Anti-Bacterial Agents , Enterococcus faecium , Humans , Gram-Positive Bacteria , Microbial Sensitivity Tests
5.
Fitoterapia ; 174: 105871, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38428618

ABSTRACT

The essential oils of Thymus vulgaris (TVEO) and Thymus serpyllum (TSEO) show different biological activities. The aim of the study was to evaluate the biological activities of TVEO and TSEO from Montenegro. The main components of TVEO were p-cymene (29.52%), thymol (22.8%) and linalool (4.73%) while the main components of TSEO were p-cymene (19.04%), geraniol (11,09%), linalool (9.16%), geranyl acetate (6.49%) and borneol (5.24%). Antioxidant activity determined via DPPH for TVEO was 4.49 and FRAP 1130.27, while for TSEO it was estimated that DPPH was 4.88 µL/mL and FRAP was 701.25 µmol FRAP/L. Both essential oils were active against all tested bacteria, with the highest level of sensitivity of E. coli with MIC of 1.5625 µL/mL. Essential oils showed strong cytotoxic effects on human cancer cell lines, with IC50 values ranging from 0.20 to 0.24 µL/mL for TVEO and from 0.32 to 0.49 µL/mL for TSEO. TVEO caused apoptosis in cervical adenocarcinoma HeLa cells through activation of caspase-3 and caspase-8, while TSEO caused apoptosis through caspase-3. EOs decreased levels of oxidative stress in normal MRC-5 cells. HeLa cells treated with TVEO had reduced MMP2 expression levels, while cells treated with TSEO had lowered MMP2 and MMP9 levels. The treatment of HeLa cells with TVEO increased the levels of miR-16 and miR-34a, indicating potential tumor-suppressive properties. Our findings suggest that Thymus essential oils may be considered as good candidates for further investigation as cancer-chemopreventive and cancer-therapeutic agents.


Subject(s)
Acyclic Monoterpenes , Cymenes , MicroRNAs , Oils, Volatile , Thymus Plant , Humans , Oils, Volatile/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Caspase 3 , Matrix Metalloproteinase 2/pharmacology , Escherichia coli , Thymus Plant/chemistry , HeLa Cells , Montenegro , Molecular Structure , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Plant Oils/pharmacology , Plant Oils/chemistry
6.
Food Res Int ; 182: 114148, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38519178

ABSTRACT

In this current study, the internal structure of nanostructured lipid carriers was modulated by phospholipids (lecithin PC, hydrogenated soybean phospholipid HPC) and solid lipids to achieve stable encapsulation of citral. The presence of high melting point HPC could construct α-crystalline type with more lattice defects and effectively inhibit ß-ization. The HPC group could maintain the particle size at 155.9-186.9 nm, the polydispersity index (PDI) at 0.182-0.321, the Zeta potential at -57.58 mV to -49.35 mV and the retention rate of citral at 91.33-98.49 % in the acidic environments of 2 mM and 20 mM hydrochloric acid solutions. The recrystallization index (RI) of NLC increased with the number of solid lipid ester bonds (from 3.57 % to 16.58 % in the PC group and from 0.82 % to 12.47 % in the HPC group). The results illustrated that the number of solid lipid ester bonds and the melting point of phospholipids affected crystallinity of the lipid matrix and thus the stability of encapsulated citral. Hydrogenated phospholipid with high melting points was more beneficial in stabilizing citral. The present study improved the acidic stability of citral and provided a new thought for the application of citral in acidic beverages.


Subject(s)
Acyclic Monoterpenes , Nanostructures , Phospholipids , Drug Carriers/chemistry , Nanostructures/chemistry , Esters
7.
Mol Biol Rep ; 51(1): 382, 2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38430358

ABSTRACT

BACKGROUND: Gentamicin leads to nephrotoxicity with increasing oxidative stress. In the present research the role of citronellol on oxidative damage induced by gentamicin in nephrotoxic rats was evaluated. METHODS AND RESULTS: Forty-twomale Wistar rats were randomly divided into seven equal groups; healthy control, gentamicin, DMSO, citronellol 50, citronellol 100, citronellol 200 and vitamin E. The animals were anesthetized after 12 days of treatment. Kidney and serum samples were received for biochemical, histological changes, and gene expression assessments. The levels of serum glutathione (GSH), serum and kidney glutathione peroxidase (GPX) and the expression of GPX gene against gentamicin group were increased in citronellol treatment groups. The levels of serum and kidney malondialdehyde (MDA), urine protein, serum creatinine and the gene expression of inflammatory factors including tumor necrosis factor-alpha (TNF-α) and Interleukin 6 (IL-6) against gentamicin group were decreased in these groups. Moreover, recuperation in histological alterations was shown in three groups receiving citronellol compared to the gentamicin group. CONCLUSIONS: Citronellol with its antioxidant and anti-inflammatory properties can decrease kidney damage caused by nephrotoxicity induced by gentamicin.


Subject(s)
Acyclic Monoterpenes , Antioxidants , Renal Insufficiency , Rats , Animals , Antioxidants/metabolism , Gentamicins/toxicity , Rats, Wistar , Oxidative Stress , Glutathione/metabolism , Glutathione Peroxidase/metabolism
8.
Int J Food Microbiol ; 416: 110656, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38461733

ABSTRACT

Citral has attracted much attention as a safe and effective plant-derived bacteriostatic agent. However, the ability of citral to induce the formation of VBNC state in Vibrio vulnificus has not been evaluated. In the present study, V. vulnificus was shown to be induced to form the VBNC state at 4.5 h and 3 h of citral treatment at 4MIC and 6MIC. Moreover, the citral-induced VBNC state of V. vulnificus maintained some respiratory chain activity and was able to recover well in both APW media, APW media supplemented with 5 % (v/v) Tween 80 and 2 mg/mL sodium pyruvate. Field emission and transmission electron microscopy showed that the external structure of the citral-induced VBNC V. vulnificus cells was shortened to short rods, with folded cell membrane, rough cell surface, and dense cytoplasm and loose nuclear material in the internal cell structure. In addition, the possible molecular mechanisms of citral-induced formation and recovery of V. vulnificus in the VBNC state were explored by transcriptomics. Transcriptome analyses revealed that 1118 genes were significantly altered upon entry into the VBNC state, and 1052 genes were changed after resuscitation. Most of the physiological activities related to energy production were inhibited in the citral-induced VBNC state of V. vulnificus; however, the bacteria retained its pathogenicity. The citral-induced resuscitation of V. vulnificus in the VBNC state selectively restored the activity of some genes related to bacterial growth and reproduction. Meanwhile, the expression levels of other genes may have been influenced by citral-induced resuscitation after the formation of the VBNC state. In conclusion, this study evaluated and analyzed the ability and possible mechanism of citral on the formation of VBNC state and the recovery of VBNC state of V. vulnificus, and made a comprehensive assessment for the safety of citral application in food production.


Subject(s)
Acyclic Monoterpenes , Vibrio vulnificus , Gene Expression Profiling
9.
Int J Biol Macromol ; 265(Pt 1): 130953, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38499124

ABSTRACT

Geranium (Pelargonium graveolens) is known for being an aromatic plant rich in bioactive compounds with antibacterial properties. In this study, geranium essential oil (GEO) was extracted and encapsulated in ultrafine bean starch fibers produced by electrospinning as an antibacterial agent. GEO revealed a composition rich in volatile compounds, including citronellol, cis-geraniol, ß-linalool, citronellyl formate, and linalool formate. In its free form, GEO exhibited high antibacterial activity against pathogenic bacteria strains (L. monocytogenes, S. aureus, and E. coli). The bean starch fibers, produced with and without the addition of GEO, were uniform and continuous, with an average diameter ranging from 249 to 373 nm. Confocal analysis indicated a uniform distribution of GEO in the fibers, with a loading capacity of 54.0 %, 42.9 %, and 36.5 % for 20 %, 30 %, and 40 % GEO concentrations, respectively. Remarkably, fibers containing 40 % GEO showed a significant reduction in tested bacteria (L. monocytogenes, S. aureus, and E. coli), suggesting promising applications in preventing losses and extending the shelf life of food through active packaging.


Subject(s)
Acyclic Monoterpenes , Geranium , Oils, Volatile , Pelargonium , Oils, Volatile/pharmacology , Oils, Volatile/analysis , Staphylococcus aureus , Escherichia coli , Anti-Bacterial Agents/pharmacology
10.
Colloids Surf B Biointerfaces ; 237: 113841, 2024 May.
Article in English | MEDLINE | ID: mdl-38492412

ABSTRACT

Geraniol (Ger) is an essential oil molecule with excellent biological activity. High hydrophobicity and volatility limit its practical application. Cyclodextrins (CDs) are water-soluble cyclic oligosaccharides with hydrophobic cavities. Physical encapsulation of CDs to improve the solubility and stability of essential oil molecules is not satisfactory. Therefore, this study synthesized the γ-CD derivative (γ-CD-Ger) by grafting Ger onto γ-CD using a bromide-mediated method. Compared to the inclusion complexes (γ-CD/Ger) formed by both, the derivatives exhibit better solubility and thermal stability. The derivative has better antibacterial activity when the ratio of γ-CD to Ger was 1:2. In addition, the derivatives did not exhibit cytotoxic and hemolytic properties. These results indicate that this research provides a water-soluble antibacterial agent with a wide range of promising applications and offers new ideas for the application of alcohol hydrophobic molecules in aqueous systems.


Subject(s)
Acyclic Monoterpenes , Cyclodextrins , Oils, Volatile , gamma-Cyclodextrins , gamma-Cyclodextrins/pharmacology , gamma-Cyclodextrins/chemistry , Solubility , Anti-Bacterial Agents/pharmacology , Cyclodextrins/pharmacology , Cyclodextrins/chemistry , Water/chemistry
11.
Int J Biol Macromol ; 263(Pt 2): 130401, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38403230

ABSTRACT

Listeria monocytogenes (L. monocytogenes) is a foodborne pathogen often found in ready-to-eat (RTE) foods, posing significant threats to human health. In this study, an active film based on cross-linking via Schiff base and electrostatic interaction to inactivate L. monocytogenes on RTE foods was constructed. Zinc-casein hydrolysate chelates (Zn-HCas) was prepared and blended with cationic starch (CSt) to form the substrates of the film. Then, Citral (CI) with excellent antibacterial properties was added to enhance the biological and packaging properties of the film through covalent cross-linking (Schiff base). Based on the zinc ion-activated metalloproteinases produced by L. monocytogenes, the cross-linked film could be disrupted and the release of CI was accelerated. The variation in color, FTIR, and amino group content proved that Schiff base reaction had taken place. Enhanced mechanical properties, barrier properties, thermal stability and antimicrobial activity against L. monocytogenes (exceed 99.99 %) were obtained from the CI/Zn-HCas/CSt film. The application on RTE cheese results demonstrated that the cross-linked film could be employed in active packaging field with the ability in maintaining the original chroma and texture properties of RTE cheese. In summary, the prepared cross-linked film could be used as an active packaging against L. monocytogenes contamination with great potential.


Subject(s)
Acyclic Monoterpenes , Caseins , Listeria monocytogenes , Meat Products , Humans , Starch , Food Packaging/methods , Zinc , Schiff Bases , Food Microbiology , Meat Products/microbiology
12.
Fitoterapia ; 174: 105875, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38417678

ABSTRACT

Grapefruit mint (Mentha suaveolens × piperita) is a hybrid, perennial, and aromatic plant widely cultivated all over the world and used in the food, cosmetics, and pharmaceutical industries mostly for its valuable essential oil. Herein, we evaluated the anticancer activity of the grapefruit mint essential oil, cultivated in Iran. For the chemical composition analysis of essential oil, GC-MS was used. MTT assay was utilized for assessing the cytotoxic activity of the essential oil. The type of cell death was determined by annexin V/PI staining. Essential oil effect on the expression of maternally expressed gene 3 (MEG3), a regulatory lncRNA involved in cell growth, proliferation, and metastasis, was studied using qRT-PCR. Linalool (43.9%) and linalool acetate (40.1%) were identified as the dominant compounds of essential oil. Compared with MCF-7, the MDA-MB-231 cells were more sensitive to essential oil (IC50 = 7.6 µg/ml in MCF-7 and 5.9 µg/ml in MDA-MB-231 after 48 h). Essential oil induced cell death by apoptosis. Wound healing scratch assay confirmed the anti-invasive effect of essential oil. In addition, essential oil upregulated the tumor suppressor MEG3 in breast cancer cells. These results provide new insights into grapefruit mint essential oil potential application as an anticancer adjuvant in combination treatments for breast cancer patients.


Subject(s)
Acyclic Monoterpenes , Breast Neoplasms , Citrus paradisi , Mentha , Oils, Volatile , Humans , Female , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Mentha/chemistry , Molecular Structure , Breast Neoplasms/drug therapy , Mentha piperita
13.
Appl Microbiol Biotechnol ; 108(1): 245, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38421431

ABSTRACT

Terpenes are valuable industrial chemicals whose demands are increasingly being met by bioengineering microbes such as E. coli. Although the bioengineering efforts commonly involve installing the mevalonate (MVA) pathway in E. coli for terpene production, the less studied methylerythritol phosphate (MEP) pathway is a more attractive target due to its higher energy efficiency and theoretical yield, despite its tight regulation. In this study, we integrated an additional copy of the entire MEP pathway into the E. coli genome for stable, marker-free terpene production. The genomically integrated strain produced more monoterpene geraniol than a plasmid-based system. The pathway genes' transcription was modulated using different promoters to produce geraniol as the reporter of the pathway flux. Pathway genes, including dxs, idi, and ispDF, expressed from a medium-strength promoter, led to the highest geraniol production. Quantifying the MEP pathway intermediates revealed that the highest geraniol producers had high levels of isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP), but moderate levels of the pathway intermediates upstream of these two building blocks. A principal component analysis demonstrated that 1-deoxy-D-xylulose 5-phosphate (DXP), the product of the first enzyme of the pathway, was critical for determining the geraniol titer, whereas MEP, the product of DXP reductoisomerase (Dxr or IspC), was the least essential. This work shows that an intricate balance of the MEP pathway intermediates determines the terpene yield in engineered E. coli. The genetically stable and intermediate-balanced strains created in this study will serve as a chassis for producing various terpenes. KEY POINTS: • Genome-integrated MEP pathway afforded higher strain stability • Genome-integrated MEP pathway produced more terpene than the plasmid-based system • High monoterpene production requires a fine balance of MEP pathway intermediates.


Subject(s)
Acyclic Monoterpenes , Mevalonic Acid , Terpenes , Escherichia coli/genetics , Monoterpenes , Phosphates
14.
Int J Biol Macromol ; 261(Pt 2): 129857, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38307438

ABSTRACT

The application of CO2 supercritical fluid (SCF) technology has developed rapidly because of its non-toxic, environmentally friendly, mild reaction conditions and safety. The SCF technology can effectively speed up the reaction process of nano-material synthesis, and maintains a high degree of controllability and repeatability. This study mainly included carboxymethyl chitosan sodium salt (CCS), citral (CT), p-coumaric acid (CA), and ZnSO4 as raw materials to prepare CCS-CT-CA-Zn complex as a pH-responsive agent and was investigated using supercritical fluid technique. The coordination structure of Bridge-CCS-CT-CH3COO-CA-Zn-Schiff base/OH and the morphology of the complex agents were verified. The prepared CCS-CT-CA-Zn complex showed good dispersion and uniformity (mean size: 852 ± 202 nm, PdI: 0.301, and mean zeta potential: -31 ± 6 mV). Also, it has a good pH responsive release in an acid environment. Besides, both of CCS-CT-CA-Zn complex (DS-B) and its decomposed mixture in acid (DS-A) demonstrated significant antioxidant and anti-vibrio activity. Moreover, both DS-B complex and DS-A mixture inhibited biofilm formation, swimming, and swarming motilities of V. parahaemolyticus in a dose-dependent manner. This work will provide a scientific basis for the further design and development of natural products derived antibacterial-antioxidant complex agents, food additives and feed additives.


Subject(s)
Acyclic Monoterpenes , Chitosan , Chitosan/pharmacology , Chitosan/chemistry , Zinc/chemistry , Schiff Bases/pharmacology , Schiff Bases/chemistry , Antioxidants/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Hydrogen-Ion Concentration
15.
Planta ; 259(4): 73, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38393405

ABSTRACT

MAIN CONCLUSION: The transcription factor LiNAC100 has a novel function of regulating floral fragrance by directly regulating linalool synthase gene LiLiS. Lilium 'Siberia', an Oriental hybrid, is renowned as both a cut flower and garden plant, prized for its color and fragrance. The fragrance comprises volatile organic compounds (VOCs), primarily monoterpenes found in the plant. While the primary terpene synthases in Lilium 'Siberia' were identified, the transcriptional regulation of these terpene synthase (TPS) genes remains unclear. Thus, understanding the regulatory mechanisms of monoterpene biosynthesis is crucial for breeding flower fragrance, thereby improving ornamental and commercial values. In this study, we isolated a nuclear-localized LiNAC100 transcription factor from Lilium 'Siberia'. The virus-induced gene silencing (VIGS) of LiNAC100 was found to down-regulate the expression of linalool synthase gene (LiLiS) and significantly inhibit linalool synthesis. Conversely, transient overexpression of LiNAC100 produced opposite effects. Additionally, yeast one-hybrid and dual-luciferase assays confirmed that LiNAC100 directly activates LiLiS expression. Our findings reveal that LiNAC100 plays a key role in monoterpene biosynthesis in Lilium 'Siberia', promoting linalool synthesis through the activation of LiLiS expression. These results offer insights into the molecular mechanisms of terpene biosynthesis in Lilium 'Siberia' and open avenues for biotechnological enhancement of floral scent.


Subject(s)
Lilium , Lilium/genetics , Lilium/metabolism , Gene Expression Regulation, Plant , Plant Breeding , Acyclic Monoterpenes/metabolism , Monoterpenes/metabolism , Flowers/genetics , Transcription Factors/genetics
16.
PLoS One ; 19(2): e0293124, 2024.
Article in English | MEDLINE | ID: mdl-38324615

ABSTRACT

The development of insecticide resistance in mosquitoes of public health importance has encouraged extensive research into innovative vector control methods. Terpenes are the largest among Plants Secondary Metabolites and have been increasingly studied for their potential as insecticidal control agents. Although promising, terpenes are insoluble in water, and they show low residual life which limits their application for vector control. In this study, we developed and evaluated the performances of terpenoid-based nanoemulsions (TNEs) containing myrcene and p-cymene against the dengue vector Aedes aegypti and investigated their potential toxicity against non-target organisms. Our results showed that myrcene and p-cymene showed moderate larvicidal activity against mosquito larvae compared to temephos an organophosphate widely used for mosquito control. However, we showed similar efficacy of TNEs against both susceptible and highly insecticide-resistant mosquitoes from French Guyana, hence suggesting an absence of cross-resistance with conventional insecticides. We also showed that TNEs remained effective for up to 45 days in laboratory conditions. The exposure of zebrafish to TNEs triggered behavioral changes in the fish at high doses but they did not alter the normal functioning of zebrafish organs, suggesting a good tolerability of non-target organisms to these molecules. Overall, this study provides new insights into the insecticidal properties and toxicity of terpenes and terpenoid-based formulations and confirms that TNE may offer interesting prospects for mosquito control as part of integrated vector management.


Subject(s)
Acyclic Monoterpenes , Aedes , Alkenes , Cymenes , Dengue , Insecticides , Animals , Terpenes/pharmacology , Zebrafish , Mosquito Vectors , Insecticides/pharmacology , Dengue/prevention & control , Larva
17.
Int J Biol Macromol ; 262(Pt 2): 130129, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38354939

ABSTRACT

(R)-Citronellal is a valuable molecule as the precursor for the industrial synthesis of (-)-menthol, one of the worldwide best-selling compounds in the flavors and fragrances field. However, its biocatalytic production, even from the optically pure substrate (E)-citral, is inherently limited by the activity of Old Yellow Enzyme (OYE). Herein, we rationally designed a different approach to increase the activity of OYE in biocatalytic production. The activity of OYE from Corynebacterium glutamicum (CgOYE) is increased, as well as superior thermal stability and pH tolerance via truncating the different lengths of regions at N-terminal of CgOYE. Next, we converted the truncation mutant N31-CgOYE, a protein involved in proton transfer for the asymmetric hydrogenation of CC bonds, into highly (R)- and (S)-stereoselective enzymes using only three mutations. The mixture of racemic (E/Z)-citral is reduced into the (R)-citronellal with ee and conversion up to 99 % by the mutant of CgOYE, overcoming the problem of the reduction for the mixtures of (E/Z)-citral in biocatalytic reaction. The present work provides a general and effective strategy for improving the activity of OYE, in which the partially conserved histidine residues provide "tunable gating" for the enantioselectivity for both the (R)- and (S)-isomerases.


Subject(s)
Aldehydes , NADPH Dehydrogenase , Protons , NADPH Dehydrogenase/chemistry , NADPH Dehydrogenase/genetics , NADPH Dehydrogenase/metabolism , Acyclic Monoterpenes
18.
PLoS One ; 19(2): e0298448, 2024.
Article in English | MEDLINE | ID: mdl-38394306

ABSTRACT

Monoterpenes are a large class of naturally occurring fragrant molecules. These chemicals are commonly used in olfactory studies to survey neural activity and probe the behavioral limits of odor discrimination. Monoterpenes (typically in the form of essential oils) have been used for centuries for therapeutic purposes and have pivotal roles in various biological and medical applications. Despite their importance for multiple lines of research using rodent models and the role of the olfactory system in detecting these volatile chemicals, the murine sensitivity to monoterpenes remains mostly unexplored. We assayed the ability of C57BL/6J mice to detect nine different monoterpenes (the acyclic monoterpenes: geraniol, citral, and linalool; the monocyclic monoterpenes: r-limonene, s-limonene, and γ-terpinene; and the bicyclic monoterpenes: eucalyptol, α-pinene, and ß-pinene) using a head-fixed Go / No-Go operant conditioning assay. We found that mice can reliably detect monoterpene concentrations in the low parts per billion (ppb) range. Specifically, mice were most sensitive to geraniol (threshold: 0.7 ppb) and least sensitive to γ-terpinene (threshold: 18.1 ppb). These estimations of sensitivity serve to set the lower limit of relevant monoterpene concentrations for functional experiments in mice. To define an upper limit, we estimated the maximum concentrations that a mouse may experience in nature by collating published headspace analyses of monoterpene concentrations emitted from natural sources. We found that natural monoterpenes concentrations typically ranged from ~1 to 1000 ppb. It is our hope that this dataset will help researchers use appropriate monoterpene concentrations for functional studies and provide context for the vapor-phase delivery of these chemicals in studies investigating their biological activity in mice.


Subject(s)
Acyclic Monoterpenes , Cyclohexane Monoterpenes , Monoterpenes , Mice , Animals , Limonene , Mice, Inbred C57BL , Monoterpenes/pharmacology , Bicyclic Monoterpenes
19.
J Agric Food Chem ; 72(9): 4825-4833, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38408332

ABSTRACT

Geraniol is an attractive natural monoterpene with significant industrial and commercial value in the fields of pharmaceuticals, condiments, cosmetics, and bioenergy. The biosynthesis of monoterpenes suffers from the availability of key intermediates and enzyme-to-substrate accessibility. Here, we addressed these challenges in Candida glycerinogenes by a plasma membrane-anchoring strategy and achieved sustainable biosynthesis of geraniol using bagasse hydrolysate as substrate. On this basis, a remarkable 2.4-fold improvement in geraniol titer was achieved by combining spatial and temporal modulation strategies. In addition, enhanced geraniol transport and modulation of membrane lipid-associated metabolism effectively promoted the exocytosis of toxic monoterpenes, significantly improved the resistance of the engineered strain to monoterpenes and improved the growth of the strains, resulting in geraniol yield up to 1207.4 mg L-1 at shake flask level. Finally, 1835.2 mg L-1 geraniol was obtained in a 5 L bioreactor using undetoxified bagasse hydrolysate. Overall, our study has provided valuable insights into the plasma membrane engineering of C. glycerinogenes for the sustainable and green production of valuable compounds.


Subject(s)
Monoterpenes , Pichia , Acyclic Monoterpenes/metabolism , Metabolic Engineering , Monoterpenes/metabolism
20.
Acta Trop ; 252: 107155, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38373527

ABSTRACT

This study aimed to produce linalool loaded zinc oxide nanocomposite (LZNPs) and assess its in vitro and in vivo antileishmanial effects against Leishmania major. LZNPs was produced through the synthesis of an ethanolic solution containing polyvinyl alcohol. The average size of LZNPs was determined to be 105 nm. The findings indicated that LZNPs displayed significant (p < 0.01) antileishmanial effects on promastigotes and amastigotes. Following exposure of promastigotes to LZNPs, there was a notable rise in the percentage of early and late apoptotic cells from 9.0 to 57.2 %. The gene expression levels of iNOS, IFN-γ, and TNF-α in macrophages were upregulated in a dose-dependent approach following exposure to LZNPs. LZNPs alone and in conjunction with glucantime (Glu) resulted in a reduction in the diameter and parasite load of CL lesions in infected mice. Treatment of the CL-infected mice with LZNPs at 25 and 50 mg/kg mainly in combination with Glu-reduced the tissue level of malondialdehyde (MDA), increased both gene and protein expression of the antioxidant enzymes as well as raised the expression level of IFN-γ and IL-12 cytokines, whereas caused a significant reduction in the expression level of IL-4. The present study shows that LZNPs has potent antileishmanial effects and controls CL in a mice model through its antioxidant and immunomodulatory properties. Further investigation, especially in clinical trials, could explore the potential use of this nanocomposite in managing and treating CL.


Subject(s)
Acyclic Monoterpenes , Antiprotozoal Agents , Cyclohexanols , Trityl Compounds , Zinc Oxide , Animals , Mice , Zinc Oxide/pharmacology , Antioxidants/pharmacology , Zinc , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/therapeutic use , Meglumine Antimoniate , Mice, Inbred BALB C
SELECTION OF CITATIONS
SEARCH DETAIL
...